Semantic Theory Lecture 14: Discourse Semantics II

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Discourse Representation Theory

An Example

- A farmer owns a donkey. He beats it.

$$
\begin{aligned}
& x y \operatorname{z~u} \\
& \hline \text { farmer(x) } \\
& \operatorname{donkey}(y) \\
& \text { owns }(x, y) \\
& z=x \\
& u=y \\
& \operatorname{beat}(z, u)
\end{aligned}
$$

Denotational Interpretation

- Let
- $K=\left\langle U_{k}, C_{k}\right\rangle$ a DRS
- $M=\left\langle U_{M}, V_{M}\right\rangle$ a FOL model structure appropriate for K (i.e., M provides interpretations for all relation symbols occurring in K).
- An embedding of K into M is a function f from U_{K} to U_{M}.

Verifying embedding

- An embedding f of K in M verifies K in M iff f verifies every condition $\alpha \in C_{k}$
- Notation: $\mathrm{f} \mathrm{F}_{\mathrm{M}} \mathrm{K}$
- f verifies condition α in $M\left(f \models_{M} \alpha\right)$:
- $f \vDash_{M} R\left(x_{1}, \ldots, x_{n}\right)$ iff $\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in V_{M}(R)$
- $f \vDash_{\mathrm{M}} \mathrm{X}=\mathrm{a}$ iff $\mathrm{f}(\mathrm{x})=\mathrm{V}_{\mathrm{M}}(\mathrm{a})$
- $f \vDash_{\mathrm{M}} \mathrm{x}=\mathrm{y} \quad$ iff $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$

Truth

- Let K be a closed DRS and M be an appropriate model structure for K.
- K is true in M iff there is a verifying embedding f of K in M.

Verifying Embedding: Example

Let K be the example DRS from above:

■ $K=<\{x, y, z, u\}$,
$\{\operatorname{professor}(x), \operatorname{book}(y), \operatorname{own}(x, y), \operatorname{read}(z, u), z=x, u=y\}>$

■ $f \mid={ }_{M} K$ iff f verifies every condition $\alpha \in C_{K}$, i.e.:

$$
\begin{aligned}
& \left.f\left|=_{M} \operatorname{professor}(x), f\right|_{M} \operatorname{book}(y) f\right|_{M}, \operatorname{own}(x, y), \\
& f\left|\left.\right|_{M} \operatorname{read}(z, u), f\right|=_{M} z=x, \text { and }\left.f\right|_{M} u=y
\end{aligned}
$$

- This holds iff:
$\mathrm{f}(\mathrm{x}) \in \mathrm{V}_{\mathrm{M}}$ (professor), $\mathrm{f}(\mathrm{y}) \in \mathrm{V}_{\mathrm{M}}($ book $),\langle\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})\rangle \in \mathrm{V}_{\mathrm{M}}($ own $)$, $\langle f(z), f(u)\rangle \in V_{M}($ read $), f(z)=f(x)$, and $f(u)=f(y)$

Simplification

- $f(x) \in V_{M}($ professor $) \wedge f(y) \in V_{M}($ book $) \wedge\langle f(x), f(y)\rangle \in V_{M}(o w n) \wedge$ $\langle f(z), f(u)\rangle \in V_{M}(r e a d) \wedge f(z)=f(x) \wedge f(u)=f(y)$
iff
- $f(x) \in V_{M}($ professor $) \wedge f(y) \in V_{M}($ book $) \wedge\langle f(x), f(y)\rangle \in V_{M}($ own $) \wedge$ $\langle f(x), f(u)\rangle \in V_{M}($ read $) \wedge f(u)=f(y)$
- $f(x) \in V_{M}($ professor $) \wedge f(y) \in V_{M}($ book $) \wedge\langle f(x), f(y)\rangle \in V_{M}($ own $) \wedge$ $\langle f(x), f(u)\rangle \in V_{M}(r e a d) \wedge f(u)=f(y)$
iff
- $f(x) \in V_{M}($ professor $) \wedge f(y) \in V_{M}($ book $) \wedge\langle f(x), f(y)\rangle \in V_{M}(o w n) \wedge$ $\langle f(x), f(y)\rangle \in V_{M}($ read $)$

Truth: Example

- $K=<x, y, z, u\}$, $\{\operatorname{professor}(x), \operatorname{book}(y), \operatorname{own}(x, y), \operatorname{read}(z, u), z=x, u=y\}>$
- Embedding f verifies K in $\mathrm{M}: \mathrm{f} \mid{ }_{=\mathrm{M}} \mathrm{K}$ iff f verifies every condition $\alpha \in C_{K}$ iff $f(x) \in V_{M}($ professor $) \wedge f(y) \in V_{M}($ book $) \wedge\langle f(x), f(y)\rangle \in V_{M}(o w n) \wedge$ $\langle f(x), f(y)\rangle \in V_{M}($ read $)$

■ K is true in M iff there is an f such that $\left.f\right|_{=_{M}} K$

The Basic Contribution of DRT

- DRT provides an integrated model of global anaphoric relations (through DRS construction) and truth-conditional semantics (through model embedding).
- In particular, DRT models the ambivalent status of indefinite NPs: Indefinite noun phrases introduce new reference objects into context, and at the same time express existential quantification.

Translation of DRSes to FOL

$x_{1} \ldots x_{n}$
$c_{1} \ldots c_{n}$

- $\operatorname{DRS} K=\left\langle\left\{x_{1}, \ldots, x_{n}\right\},\left\{c_{1}, \ldots, c_{k}\right\}\right\rangle$
is truth-conditionally equivalent to the FOL formula:

$$
\exists x_{1} \ldots \exists x_{n}\left[c_{1} \wedge \ldots \wedge c_{k}\right]
$$

Indefinite NPs and Conditionals

(1) If a student works, the professor is happy.
(2) $\exists x[$ student $(x) \wedge$ work(x)] \rightarrow happy(the-professor)
(3) $\forall x[s t u d e n t(x) ~ \wedge ~ w o r k(x) ~ \rightarrow ~ h a p p y(t h e-p r o f e s s o r)] ~$

- Formulas (2) and (3) are logically equivalent:
- $\exists x A \rightarrow B \Leftrightarrow \forall x[A \rightarrow B]$ (provided that variable x does not occur free in B)

Statives and Non-Statives: Linguistic Evidence

- If a student works, she will be successful.
(1) $\exists x[$ student $(x) \wedge$ work $(x)] \rightarrow$ successful (x)
(2) $\exists x[$ student $(x) \wedge$ work $(x) \rightarrow$ successful $(x)]$
(3) $\forall x[$ student $(x) \wedge$ work $(x) \rightarrow$ successful $(x)]$
- Formula (1) is not closed (x occurs free)
- Formula (2) has wrong truth conditions (much too weak)
- Formula (3) is correct, but how can it be derived compositionally?

Indefinite NPs in Hypothetical Text

- A car is parked in front of Bill's garage. Bill needs to get to the office quickly. He doesn't know who owns the car. He calls the police, and the car is towed away.
- Suppose a car is parked in front of Bill's garage. Bill needs to get to the office quickly. He doesn't know who owns the car. Then he will call the police, and the car will be towed away.
- Let a and b be two positive integers. Let b further be even. Then the product of a and b is even too.

DRS for Conditionals

- If a professor owns a book, he reads it.

DRS (1 ${ }^{\text {st }}$ Extension)

- A discourse representation structure (DRS) K is a pair〈 U_{κ}, C_{k}, where
- U_{k} is a set of discourse referents
- C_{K} is a set of conditions
- (Irreducible) conditions:
- $R\left(u_{1}, \ldots, u_{n}\right) \quad R n$-place relation, $u_{i} \in U_{k}$
- $u=v \quad u, v \in U_{k}$
- $u=a \quad u \in U_{k}, a$ is a proper name
- $K_{1} \Rightarrow K_{2} \quad K_{1}$ and K_{2} DRSs
- Reducible conditions: as before

Construction Rule for Conditionals

- Triggering configuration:
- α is a reducible condition in DRS K of the form
[s if [s β] (then) [s γ]]
- Action:
- Remove α from C_{k}.
- Add $K_{1} \Rightarrow K_{2}$ to C_{K}, where
- $K_{1}=\langle\varnothing,\{\beta\}\rangle$
- $K_{2}=\langle\varnothing,\{\gamma\}\rangle$
- Remark: $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$ is called a duplex condition; K_{1} the "antecedent DRS" and K_{2} the "consequent DRS."

An Example

If a professor owns a book, he reads it.

An Example

If a professor owns a book, he reads it.

An Example

If a professor owns a book, he reads it.

Embedding: Basic Version

- Let $K=\left\langle U_{K}, C_{K}\right\rangle$ a $D R S, M=\left\langle U_{M}, V_{M}\right\rangle$ an FOL model structure appropriate for K. An embedding of K into M is a function from U_{K} to U_{M}.
- An embedding f of K into M verifies K in M : $f \models_{m} K$
iff f verifies every condition $\alpha \in \mathrm{C}_{\mathrm{k}}$.
- f verifies condition α in $\mathrm{M}\left(\mathrm{f} \mid{ }_{=_{M}} \alpha\right)$:
(i) $\mathrm{f} \mid={ }_{\mathrm{M}} \mathrm{R}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
iff
$\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in V_{M}(R)$
(ii) $f \mid={ }_{M} x=a$
iff $\quad f(x)=V_{M}(a)$
(iii) $f \mid{ }_{m} x=y$
iff $\quad f(x)=f(y)$

Verifying Embedding for Duplex Conditions (Preliminary)

- f п $_{\text {м }} K_{1} \Rightarrow K_{2}$
iff for all g 〇ukı f such that $g \models_{M} K_{1}$, also $g \models_{M} K_{2}$
- We write g 〇uffor " $g \supseteq f$ and $\operatorname{Dom}(g)=\operatorname{Dom}(f) \cup U "$

This seems to work ...

If a professor owns a book, he reads it.

... but in the general case, it doensn't

- Mary knows a professor. If he owns a book, he gives it to a student.

su	
s = Mary professor(u)	know(s, u)
$x \mathrm{y}$	z v w
$x=u$ book (y) owns (x, y)	$\Rightarrow \left\lvert\, \begin{aligned} & \text { gives(z,v,w) } \\ & z=x \\ & v=y \\ & \text { student(w) } \end{aligned}\right.$

Verifying embedding for Duplex Conditions

■ f м $_{\text {м }} \mathbf{K 1} \Rightarrow \mathbf{K 2}$ iff
for all $g \supseteq_{U_{K 1}} f$ such that $g \models_{M} K_{1}$, there is a $\mathrm{h} \supseteq_{U_{K} 2} \mathrm{~g}$ such that $\mathrm{h} \models_{\mathrm{M}} \mathrm{K}_{2}$

Embedding (Revised)

- Let U_{D} a set of discourse referents,
$\mathrm{K}=\left\langle\mathrm{U}_{\mathrm{K}}, \mathrm{C}_{\mathrm{K}}\right\rangle$ a DRS with $\mathrm{U}_{\mathrm{K}} \subseteq \mathrm{U}_{\mathrm{D}}$,
$\mathrm{M}=\left\langle\mathrm{U}_{\mathrm{M}}, \mathrm{V}_{\mathrm{M}}\right\rangle$ a FOL model structure appropriate for K .
- An embedding of K into M is a (partial) function from U_{D} to U_{M} such that $\mathrm{U}_{\mathrm{K}} \subseteq \operatorname{Dom}(\mathrm{f})$.

Verifying Embedding: $1^{\text {st }}$ Extension

- An embedding f of K into M verifies K in $M: f \models_{M} K$
iff f verifies every condition $\alpha \in \mathrm{C}_{\mathrm{k}}$.
- f verifies condition α in $M\left(f \mid={ }_{m} \alpha\right)$:
(i) $f \mid={ }_{M} R\left(x_{1}, \ldots, x_{n}\right) \quad$ iff $\quad\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in V_{M}(R)$
(ii) $f \mid={ }_{M} x=a \quad$ iff $\quad f(x)=V_{M}(a)$
(iii) $f \mid={ }_{M} x=y \quad$ iff $f(x)=f(y)$
(iv) $f \vDash_{M} K_{1} \Rightarrow K_{2} \quad$ iff \quad for all $g \supseteq_{U_{1}} f$ such that $g \models_{M} K_{1}$, there is a $\mathrm{h} \supseteq_{U_{K 2}} \mathrm{~g}$ such that $\mathrm{h} \models_{\mathrm{M}} \mathrm{K}_{2}$

Definition of Truth, Revised

- Let K be a closed DRS and M be an appropriate model structure for K.
- K is true in M iff there is a verifying embedding f of K in M such that $\operatorname{Dom}(f)=\mathbf{U}_{\mathrm{K}}$.

Construction Rule for Universal NPs

- Triggering configuration:
- α is a reducible condition in DRS K; α contains a subtree [s [np β] [vp γ]] or [vp [v γ] [np β]]
- $\beta=$ every δ
- Action:
- Remove α from CK.
- Add $\mathrm{K}_{1} \Rightarrow \mathrm{~K}_{2}$ to C_{K}, where
- $K_{1}=\langle\{x\},\{\delta(x)\}\rangle$ and
- $\mathrm{K}_{2}=\left\langle\varnothing,\left\{\alpha^{\prime}\right\}\right\rangle$
- obtain α^{\prime} from α by replacing β by x

Construction Rule for Negation

- Triggering configuration:
- α is a reducible condition in DRS K of the form
[s β [vp doesn't [vp $ү$]]]
- Action:
- Remove α from C_{k}
- Add $\neg K_{1}$ to C_{K}, where $K_{1}=\langle\varnothing$, $\{$ [s β [vp γ]] $\}\rangle$

Negation: Example

- A professor doesn't own a book.

Negation: Example

- A professor doesn't own a book.

Negation: Example

- A professor doesn't own a book.

Negation: Example

- A professor doesn't own a book.

Negation: Example, $2^{\text {nd }}$ Reading

- A professor doesn't own a book.

Negation: Example, $2^{\text {nd }}$ Reading

- A professor doesn't own a book.

Negation: Example, $2^{\text {nd }}$ Reading

- A professor doesn't own a book.

Construction rule for clausal disjunction

- Triggering configuration:
- α is a reducible condition in DRS K of the form
[s [s β] or [s γ]]
- Action:
- Remove α from C_{k}
- Add K_{1} v K_{2} to C_{k}, where
- $K_{1}=\langle\varnothing,\{\beta\}\rangle$ and
- $K_{2}=\langle\varnothing,\{\gamma\}\rangle$

An Example

■ A student reads a book, or a professor reads a paper.

DRS: $2^{\text {nd }}$ Extension

- A discourse representation structure (DRS) K is a pair〈 U_{k}, C_{k}, where
- U_{k} is a set of discourse referents
- C_{K} is a set of conditions
- (Irreducible) conditions:
- $R\left(u_{1}, \ldots, u_{n}\right) \quad R n$-place relation, $u_{i} \in U_{k}$
- $u=v \quad u, v \in U_{k}$
- $u=a \quad u \in U_{k}, a$ is a proper name
- $K_{1} \Rightarrow K_{2}$
K_{1} and K_{2} DRSs
- $K_{1} \vee K_{2}$
K_{1} and K_{2} DRSs
- $\neg \mathrm{K}_{1}$
K_{1} DRS

Verifying Embedding: $2^{\text {nd }}$ Extension

- An embedding f of K into M verifies K in $M: f \models_{M} K$
iff f verifies every condition $\alpha \in \mathrm{C}_{\mathrm{k}}$.
- f verifies condition α in $M\left(f \mid={ }_{M} \alpha\right)$:
(i) $f \mid={ }_{M} R\left(x_{1}, \ldots, x_{n}\right)$ iff $\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle \in V_{M}(R)$
(ii) $f \mid={ }_{M} x=a \quad$ iff $\quad f(x)=V_{M}(a)$
(iii) $f \mid=_{M} x=y \quad$ iff $\quad f(x)=f(y)$
(iv) $f \vDash M K 1 \Rightarrow K 2 \quad$ iff \quad for all $g \supseteq_{U_{K 1}} f$ such that $g \models_{M} K_{1}$, there is a $\mathrm{h} \supseteq_{U_{K 2}} \mathrm{~g}$ such that $\mathrm{h} \models_{\mathrm{M}} \mathrm{K}_{2}$
(v) $f \vDash_{\text {м }} K_{1} v K_{2}$ iff there is a $g_{1} \supseteq$ ик f such that $g_{1} \models_{\text {м }} K_{1}$ or there is a $g_{2} \supseteq_{\text {UK2 }} f$ such that $g_{2} \models_{\mathrm{M}} \mathrm{K}_{2}$
(vi) $f \vDash_{M} \neg K_{1} \quad$ iff \quad there is no $g \supseteq_{\text {UK1 }} f$ such that $g \vDash_{M} K_{1}$

